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The paper is devoted to the theoretical and experimental investigation of the ring 
(toroidal) shock wave near the axis of symmetry. The theoretical approach is based 
upon the Chester-Chisnell-Whitman method. The experimental toroidal shock wave 
is generated by a novel inducer and visualized by the shadow technique. Attention 
is paid to the manner of reflection of the shock wave from the axis of symmetry. This 
reflection appears to be irregular even at  small distances from the centre of the ring. 
This phenomenon is due to the cumulative acceleration of the converging 
axisymmetric shock front near the axis. The acceleration results in an increase in the 
incidence angle up to that characteristic of Mach (irregular) reflection. 

1. Introduction 
The convergence of one-dimensional spherical or cylindrical shock waves is known 

to be accompanied by an unlimited increase in energy density as the shock front 
approaches the centre (axis) of symmetry - unlimited amplification (Guderley 1942 ; 
Stanyukowich 1955). 

The present paper is devoted to a more general case - an axisymmetric non-one- 
dimensional shock wave, converging to the axis. The most typical example is a ring 
shock wave. Let us suppose that a thin round ring (torus) explodes in a perfect gas, 
resulting in ring (toroidal) shock wave generation (figure 1) .  We shall now study some 
details of the corresponding flow both, experimentally and theoretically. 

As the ring shock front approaches the centre of the ring, the wave amplitude, 
characterized by the front velocity V ,  increases, the increase being unlimited. This 
has been shown both experimentally (Berejetskaya et aE. 1984) and theoretically 
(Sokolov 1986). The conclusion on unlimited amplification of the ring shock front is 
not obvious, because in non-one-dimensional flow the energy can flow out from the 
centre in opposite directions along the axis (see figure l),  and this process tends to 
limit the amplification. 

In  the present paper we study some details of the flow pattern after the shock wave 
comes to the centre. It is shown that the axisymmetric shock front is reflected from 
the axis of symmetry in the Mach manner, such reflection being predicted and 
observed at small (perhaps infinitesimal) distances from the ring centre. 

This conclusion is in full agreement with the well-known hypothesis (Courant & 
Friedrichs, 1948) that the axisymmetric ( '  conical ') convergent shock wave undergoes 
Mach reflection in every case, in contrast to a planar shock, which can also be 
reflected in a regular manner. 
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FIGURE 1 .  Ring (toroidal) shock wave at successive times t ,  > t ,  > t , :  curve 1 ,  energy release 
region; 2, ring shock front before the moment of cumulation ; 3, ring shock front after the 
cumulation ; 4, the part of the ring shock 3 reflected from the axis; 5, Mach shock wave. The shadow 
photographs are taken along the direction of either arrow A or B. 

2. The theory 
The main characteristic features of shock front behaviour when the ring wave 

converges to the axis may be easily revealed by means of shock wave dynamics - the 
Chester-Chisnell-Whitham method (Whitham 1974). According to this approximate 
theory the shock front positions at successive times t are described by the equation 

Qs(r,z,q4+ V,,t = 0, (2.1) 

r ,  z,p, being the coordinates of any point belonging to a mathematical surface which 
coincides with the shock wave front. Here we use cylindrical coordinates, and V,, is 
the sound speed in the uniform gas before the front. Whitham obtained the 
approximate equations for the function @ : 

V . (M”+’ V@) = 0, (2.2) 

M = lV@l-l, (2.3) 

M being the local Mach number of the shock front and n being a constant which 
depends only upon the polytropic index y :  

n = 1+2/y+[2y/(y-l)]; M 5.1 for y = H. (2.4) 

Equation (2.2) is the strong shock approximation (M+ CO) of shock wave dynamics. 
In  the case of axisymmetric motion, (2.2) and (2.3) give: 
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Equations (2 .5)  and (2.6) have a solution 

C ,  being an arbitrary positive constant. These formulae describe the cylindrical 
(independent of z )  converging shock wave. The relation (2.8) is in excellent 
agreement with the self-similar solution of Guderley-Landau-Stanyukowich 
(Whitham 1974). 

h’ow we apply the Chester-Chisnell-Whitham method (CCW) to investigate the 
axisymmetric converging shock wave (depending on z as well as r ) .  This type of 
symmetry is more general than the cylindrical one. Nevertheless, it may be assumed 
that the CCW method supplies a good approximation in the neighbourhood of the 
axis. 

In the vicinity of a point 0 on the axis we can obtain a solution of (2.5) and (2.6) 
in the form of a local expansion in a power series in r ,  z, the first term being equal to 
(2.7) : 

@ = @,+Q1, (2.9) 

Ql = C apqrpzQ,  apq = const. (2.10) 
P.q  

If the sum s = p + q  for all the terms in G1 is higher than the degree of 
(s > 1 + l /n),  we can find a1 as a linear correction to Q,. In our case the expansion 
(2.9) gives an asymptotic approximation for V@, as long as r and z satisfy the 
condition 

This means that, when r and z tend to zero along any curve r ( z )  and r and z satisfy 
(2.11), the expansion (2.9) gives the asymptotic approximation for V@ with respect 
to the parameter R = (r2 +z2)h+0.  

The physical meaning of (2.11) is evident: we can apply the expansion (2.9) for the 
shock wave front description only before time t = 0, when it reaches the axis. The 
condition t < 0 along with (2.1) results in (2.11). 

It will be shown below that after the instant t = 0 the shock wave reflection from 
the axis results in a rather complicated form of the wave front, including triple shock 
configurations. That is why (2.9) is invalid for some r and z belonging to the region 
where @ ( r , z )  2 0. On the other hand, it will be shown that the condition for the 
validity of (2.9) is actually weaker than (2.11). 

The asymptotic approximate equation for the linear correction G1 may be 
obtained when the conditions 

@ ( r , z )  2 0. (2.1 1 )  

w1/w 4 ia~,/ari, (2.12) 

i a w w  4 i a w a r i ,  (2.13) 

are fulfilled. I n  this case the terms in (2.5) may be expressed as follows: 

because a@,/& = 0, and 

(2.14) 

(2.15) 
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FIGURE 2 .  The flow pattern in the neighbourhood of the axis and the regions of applicability of 
different expansions (t >, 0). Curve 1, incident shock wave at t = 0;  2 ,  incident shock wave at 
t > 0; 3, reflected shock wave; 4, trajectory of the triple point: 5. Mach wave. The outer expansion 
is applicable in the region above curve 4. The inner expansion is applicable below curve 1. The 
inner expansion is matched with the Mach wave on line 4. 

because (a/&) (r(i3@o/i3r)-n) = 0. The conditions (2.12) and (2.13) are used for the 
linearization of M .  So the equation for Q1 becomes 

(2.16) 

The first two terms of the expansion (2.10) for the solution of (2.16) may be 

@, =-Cl[(n-1)z2+r2], C ,  = const. (2.17) 

Having introduced new constants R, and C instead of C, and C,, we can rewrite 

represented as 

(2.9), (2.7) and (2.17) in the form 

(2.18) 

the constant C being dimensionless and R, having the dimensions of length. The 
condition of applicability of the linearization procedure, which results in (2.18), may 
be easily obtained from (2.12), (2.13) and (2.18): 

R, 9 R = (z2+ r2)a, 

r 9 rl ( z )  = KO ( z / R , ) ~ .  

(2.19) 

(2.20) 

Once these conditions are satisfied, (2.18) permits us to describe the form of the 
shock front. It is drawn schematically in figure 2. Before time t = 0 the shock front 
does not intersect the axis and a t  t = 0 it touches the axis at  the single point 0 
( r  = 0, z = 0) .  At that moment the shock front form is dcscribed by the equation 

(2.21) 

We can see that the conditions (2.11) (i.e. r 3 r , (z))  and (2.19) result in (2.20). It 
should be emphasized that the linearization is applicable even though on the curve 
(2.21) the first approximation is comparable with the linear correction (@, = -0,). 
The point is that the conditions (2.19) and (2.20) restrict the values of the gradient 
of the linear correction rather than the value of the function itself. 
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The curve (2.21) has the form of a non-quadratic parabola r - .zB, 1 < p < 2. It 
should be noted that the radius of curvature of this parabola equals zero a t  the point 
r = 0, z = 0. This results from the acceleration of the converging front due to 
amplification, because the point of the front that is nearest to the axis moves faster 
than the adjacent points. The influence of the cumulative acceleration upon the form 
of the converging front is also discussed below. 

It is possible to obtain the dependence of the velocity of the converging front upon 
r in the plane of symmetry ( z  = 0). Equations (2.6) and (2.18) give (Sokolov 1986) 

M x ($y 1 +L(')"ln). n-1 R (2.22) 

The velocity increases beyond all bounds as the front converges to  the axis, i.e. 
amplification is unlimited. 

This general type of behaviour of an axisymmetric converging shock wave near the 
axis is obviously inherent to a ring shock wave near the centre of the ring. The free 
parameter C may be determined by comparison with the results of a numerical 
simulation of a ring shock wave (Kossyi et al. 1987) but here i t  is not essential. The 
constant R, is determined below by comparison of the theory with experimental 
data. It is evident in advance that R, is of the order of the ring radius R .  

Let us proceed to the reflection of the shock front from the axis. On introducing 
an angle u between the front and the axis into (2.5) and (2.6), it is easy to replace 
these by the system (Whitham 1974) 

a l a  
-(M"sinu)---(rMncosu) = 0, aZ r ar 

(2.23) 

(2.24) 

(2.25) 

These equations come from Whitham's equations (Whitham 1974, eq. 8.101). It 
should be emphasized that here we use the angle u between the front and the axis 
rather than the angle t9 between the axis and the normal to  the front used by 
Whitham. Whitham's angle 0 is negative in the problem involved, because the radial 
front velocity V,. is directed towards the axis and sin0 = VJ(MVso) < 0. From 
geometric considerations v + ( - 0) = in. 

To obtain a solution of (2.23)-(2.25) in the region 

r - r l ( 4  (2.26) 

where (2.20) is not satisfied and hence (2.18) is invalid, we can use the method 
of matched asymptotic expansions (Nayfeh 1981). The theory is valid provided 
R/R,+O. Outer expansion (2.18) is applicable through the condition (2.20). Now we 
can look for an inner expansion in the region (2.26) in the following form: 

M = R , f ( A ) / z ,  u = u ( A ) ,  A = r / r , ( z ) .  (2.27) 

For A - 1 we have the estimate 
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so that (2.23), (2.24) and (2.27) give 
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sin v 
~ = a,? hp cos v = a2, 
f (2.28) 

where a,  and a2 are constants. On estimating the terms that are neglected in (2.28), 
we can obtain the condition of applicability of inner expansion as 

r 4 r,(z). (2.29) 

The outer expansion is applicable in the region above curve 4 in figure 2 (see 
above). The inner one is valid below curve 1.  The inner expansion is matched with a 
Mach wave on the line 4. 

I n  the region r ,  4 r 4 r,(z) both inner and outer expansions are applicable. In 
order to obtain expressions for the constants of the inner expansion we can compare 
(2.28) in case h --f m (v + 0) with the expressions for M and v (v + 0) resulting from 
(2.18). Using (2.6) and the formula tan v = - ( i 3 @ p z ) / ( a @ p ) ,  we obtain for the outer 
and inner expansions 

Hence a2 = C-", a, = C. 
It is easy to see that the acceleration of the converging shock wave is accompanied 

by an increase in the angle between the shock front and the axis. Once the 
cumulative acceleration is not limited (in the absence of dissipative effects), the 
increase in the angle is not limited either. But the reflection (or self-interaction) of 
the front with a rather high value of the angle of incidence cannot be regular, and 
there must be Mach reflection. That is why, just after the incident shock wave 
reaches the point 0, two Mach shock waves are formed at  this point and move along 
the axis in opposite directions. 

It should be emphasized that we use the CCW method only for describing the 
propagation of the incident shock wave, rather than the Mach reflection itself. In 
order to match the inner expansion with the Mach configuration and to obtain the 
characteristics of the configuration, for example the radius r,(z) of the Mach shock 
front, we need to know the relation between the angle of incidence vi at the triple 
point (figure 3) and the value of the angle 

x = arctan (dr,/dz) (2.32) 

which characterizes the rate of growth of the Mach disk radius (figure 3). The relation 

x = X(Vi), (2.33) 

along with (2.32) and the consequence from (2.28) that 

1 
(2.34) 

allow us to determine rm(z). We can take x = 0 as long as vi = vSt, vSt being the angle 
of incidence for stationary Mach reflection. The stationary Mach reflection is known 
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FIGURE 3. Mach reflection of a planar shock wave from a rigid plane. AI, incident ring shock wave ; 
AR, reflected shock wave ; AM, Mach shock; AE, contact surface; AO, trajectory of the triple point ; 
x, angle of motion of the triple point. 

to be a particular case of Mach reflection of a shock front from a rigid plane, and is 
defined by the condition x = 0 (Courant & Friedrichs 1948). On substituting vi for vSt 
in (2.34), we have 

rm=-[ R z n  1 ,  
cos vSt R, sin vSt 

(2.35) 

and in the vicinity of the point r = 0, z = 0, according to (2.32) and (2.35), x + O .  This 
confirms the stationary character of the Mach reflection. When the Mach wave is not 
very close to the point z = 0, r = 0, the reflection is no longer stationary and we 
should use another relation (2.33). 

The velocity V, of the Mach shock wave may be obtained using (2.28) and the 
relation V, = V,/sin vi, where is the velocity of the incident shock wave at  the triple 
point : 

vm=-. KORO 

cz (2.36) 

Thus in the vicinity of O(z/R,-+O), the Mach shock wave is of small size, but of 
high speed. 

3. Experiment 
The experimental ring shock wave is induced by means of the surface breakdown 

of numerous spark gaps arranged along the inner surface of a ring, facing the axis of 
symmetry. The general principle of the shock inducer is analogous to that described 
in Berejetskaya et al. (1984). But for the present study we have increased the number 
of sparks up to 100, and have arranged them more reasonably in order to achieve a 
more uniform energy release into the gas. As a result the inducer forms a practically 
homogeneous ring plasma filament. The energy release in the filament generates a 
ring (toroidal) shock wave in the gas. 

The radius of the filament (R,) is 5 cm, i.e. the total length of the filament, 9, is 
equal to approximately 32 cm. The experiments are performed in air a t  atmospheric 
pressure. 

The energy release in the discharge is d < 1.2 kJ.  The duration of the discharge is 
about 3 0 ~ s .  The average Mach number of the induced shock wave propagating 
toward the axis is about 2. 

The shock wave is visualized by shadow photography, using a ruby laser as a 
source of light. The probing laser beam is directed a t  a right angle to the axis of the 
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A 
FIGURE 4. Shadow picture sequence. The inducer of the ring shock is on the left ( a )  time t = 80 ps, 

coordinate of Mach wave 2 = 1.4 cm: (6) t = 87 I S ,  z: = 2.5 cm; ( e )  t = 102 ps. z = 4 cm. 

ring inducer (see figure 1,  direction A). The shadow picture sequence of figure 4 is 
taken during different runs, by varying the time delay of the laser pulse with respect 
to start-up of the inducer. 

The shadow pictures in figure 4 clearly show the discontinuity pattern typical of 
shock waves undergoing Mach reflection (compare with figure 3).  The Mach wave 
cannot be seen in the first shadow photograph because of inadequate spatial 
resolution. In accordance with the theoretical curve 1 in figure 5 (see §4), the radius 
rm of the Mach disk at this time instant should be less than 0.1 mm, and the Mach 
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2 (cm) 
FIGURE 5. Curve 1 ,  Mach wave radius r ,  =f(zm) (theory); squares 2, experimental radius of 

Mach wave; 3, velocity of Mach shock. 

2 

FIGURE 6. Reflection of a spherical shock from a rigid plane. Curve 1 ,  the centre of the blast; 
2, expanding spherical shock ; 3, regular reflection ; 4, Mach reflection. 

configuration a t  such a scale cannot be resolved by means of our shadow technique. 
Nevertheless a marked distortion of the incident shock front, resulting from 
acceleration of the ring shock due to amplification, is clearly visible near the axis. 

Thc cxpcrimental radius rm and velocity M ,  = V,/& of the Mach wave obtained 
by the use of shadow photographs are given in figure 5 .  It should be emphasized that 
we investigated the Mach wave in the range of z-values where its radius is very small 
(< 1 mm), much less than the characteristic value of the z-coordinate ( 3  1 em). So 
there are different scales for rm and z in figure 5 .  

Should the amplification effect be absent, the angle of incidence vi would be given 
by the simple formula 

vi = arctan (z/R,). (3.1) 

For example, (3.1) would hold in the case of regular reflection of a spherical (or 
cylindrical) blast wave from a rigid plane (see figure 6). Here we imply that R, is the 
height of the centre of the blast, and z is the distance between the projection of the 
blast centre on the plane and a point where the incident wave intersects the plane. 
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FIGURE 7 .  Experimental angle of incidence (curve l ) ,  measured at a triple point, compared with 

the reflection of a spherical shock from a rigid plane (curve 2). 

In  this case the transition from regular to Mach reflection would be coincident with 
the point where vi = v,,, v,, being the critical angle. 

Regular reflection is known to be impossible when the incidence angle exceeds the 
critical angle (vi > v,,). I n  the controversial range of incidence angles vst < vi < vcr, 
both kinds of reflection are possible. In  any event, Mach reflection would be 
impossible for vi < vSt (Courant & Friedrichs 1948). 

The coordinates z,, and zSt that would correspond to v,, z 40" and vSt x 30' 
according to (3.1), are shown in figure 5 .  These values of v,, and ust are taken for 
M ,  x 2.5 (Bazhenova & Gvozdeva 1977). Our experimental data clearly indicate that 
a Mach wave exists even at z < z,,, zSt. This fact displays the effect of amplification 
upon the reflection of shock waves from the axis. 

Moreover, the trend of the r,(x) curve (see figure 5 )  is quite consistent with the 
theoretical statement that the reflection of the wave from the axis of symmetry 
proceeds in the Mach manner, even at infinitesimal z. 

The existence of a Mach wave at small values of z is connected with the increase 
in the angle vi due to the incident wave acceleration near the axis. To illustrate this 
effect, observed values of the angle of incidence vi (measured at  the triple point) are 
presented in figure 7 (curve 1). These values are greater than those calculated using 
(3.1) (curve 2). 

It should be noted that in our case Mach reflection occurs in the 'controversial' 
range of observed incidence angles vSt < vi < v,,. 

Another experimental result is a sequence of shadow photographs (see figure 8) 
obtained by using another direction of the probing laser beam. Namely, the beam is 
directed along the axis and the plane of the image coincides with the plane of the 
ring (see figure 1, direction B). The good symmetry of the ring shock wave near the 
axis confirms the presence of amplification effects a t  small distances from the axis 
(figure 5 ) .  

A deviation from axial symmetry and the role of shape perturbations of the ring 
shock front are analysed in Barkhudarov et al. (1988). 
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A 
FIGURE 8. The convergence of the ring shock wave. (a) time t = 65 ps after the beginning of 

surface discharge; (b) t = 72 ps; ( c )  t = 75 ps. 

4. Comparison of the experimental results with the theory 
To compare the results of the theory with the experiment it is necessary to use the 

relation (2.33) between x and vi, because the experimental value of v, is slightly above 
vst . 

Now we adopt an approximate relation x(vi) for vi > v,.. We have already noted 
that x = 0 when vi = vSt, so we can try to use an expression x(vi) that tends to zero 
as vi --f vSt. For example this could be 

17 

x = 0.33 (sin vi vi - sin vSt coslIn v,J, (4.1) 
FLM 226 
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FIGURE 9. The angle of motion of a triple point as a function of the angle of incidence: curve 1 
corresponds to  the relation (4.1), and curve 2 is obtained from Whitham’s theory (Bazhenova & 
Gvozdeva 1977). 

in which uSt = 22” is the stationary Mach reflection angle for M + 1 .  The curve 
x =f(v i )  corresponding to (4.1) is shown in figure 9 (curve 1) .  For comparison the 
corresponding curve 2, obtained from Whitham’s theory (Bazhenova & Gvozdeva 
1977), is also presented. The factor 0.33 in (4.1) is selected to give the best agreement 
with the present experiment. 

Combination of (4.1) and (2.34) (dr,/dz - x) gives the equation 

dyldx = 0.33 (z/y”n -0.37). (4.2) 

Here, y = rm/Ro, x = z/R,. The constant R, is estimated from (2.34) by introducing 
experimental values of the vi (figure 7)  and the corresponding radius rm (figure 5). 
This gives R, z 12 cm. Equation (4.2) is solved numerically. The resulting curve is 
shown in figure 5 together with the experimental one. The theoretical curve provides 
an estimate of the radius of the Mach wave for z < 2 cm, when experimental 
observation of it is difficult. 

5. Conclusion 
The ring shock wave undergoes Mach reflection from the axis of symmetry at small 

(infinitesimal, according to the theory) values of the axial coordinate z. The observed 
axisymmetric shock wave reflection pattern results from an increase of incidence 
angle due to  amplification. 

The authors thank Drs S. V. Bulanov, I. A. Kossyi and A. A. Savin for helpful 
discussions and advice. 
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